Shining Pismis 24

Shining Pismis 24

In what appears as a celestial dreamscape, a blue and black sky filled with brilliant stars covers about two thirds of the image. The stars are different sizes and shades of white, beige, yellow, and light orange. Across the bottom third of the scene is a craggy, mountain-like vista with spire-like peaks and deep, seemingly misty valleys. These so-called mountains appear in varying shades of orange, yellow, and brown. The soaring spires are going up, up, up, where a wispy, ethereal white cloud stretches horizontally across the scene. Steam appears to rise from the mountaintops and join with this cloud. At the top, right corner of the image, a swath of orange and brown structure cuts diagonally across the sky.
NASA, ESA, CSA, STScI

NASA’s James Webb Space Telescope captured this sparkling scene of star birth in an image released on Sept. 4, 2025. Called Pismis 24, this young star cluster resides in the core of the nearby Lobster Nebula, approximately 5,500 light-years from Earth in the constellation Scorpius. Home to a vibrant stellar nursery and one of the closest sites of massive star birth, Pismis 24 provides rare insight into large and massive stars. Its proximity makes this region one of the best places to explore the properties of hot young stars and how they evolve.

Captured in infrared light by Webb’s NIRCam (Near-Infrared Camera), this image reveals thousands of jewel-like stars of varying sizes and colors. The largest and most brilliant ones with the six-point diffraction spikes are the most massive stars in the cluster. Hundreds to thousands of smaller members of the cluster appear as white, yellow, and red, depending on their stellar type and the amount of dust enshrouding them. Webb also shows us tens of thousands of stars behind the cluster that are part of the Milky Way galaxy.

Learn more about this star cluster.

Image credit: NASA, ESA, CSA, STScI

Powered by WPeMatico

Get The Details…
Monika Luabeya

New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea

New U.S.-European Sea Level Satellite Will Help Safeguard Ships at Sea

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A ship plows through rough seas in the Bering Sea
A ship plows through rough seas in the Bering Sea in the aftermath of Typhoon Tip, one of the largest hurricanes on record. The Sentinel-6B satellite will provide data crucial to forecasting sea states, information that can help ships avoid danger.
CC BY 2.0 NOAA/Commander Richard Behn

Sea surface height data from the Sentinel-6B satellite, led by NASA and ESA, will help with the development of marine weather forecasts, alerting ships to possible dangers.

Because most global trade travels by ship, accurate, timely ocean forecasts are essential. These forecasts provide crucial information about storms, high winds, and rough water, and they depend on measurements provided by instruments in the ocean and by satellites including Sentinel-6B, a joint mission led by NASA and ESA (European Space Agency) that will provide essential sea level and other ocean data after it launches this November.

The satellite will eventually take over from its twin, Sentinel-6 Michael Freilich, which launched in 2020. Both satellites have an altimeter instrument that measures sea levels, wind speeds, and wave heights, among other characteristics, which meteorologists feed into models that produce marine weather forecasts. Those forecasts provide information on the state of the ocean as well as the changing locations of large currents like the Gulf Stream. Dangerous conditions can result when waves interact with such currents, putting ships at risk.

“Building on NASA’s long legacy of satellite altimetry data and its real-world impact on shipping operations, Sentinel-6B will soon take on the vital task of improving ocean and weather forecasts to help keep ships, their crews, and cargo safe”, said Nadya Vinogradova Shiffer, lead program scientist at NASA Headquarters in Washington.

Sentinel-6 Michael Freilich and Sentinel-6B are part of the Sentinel-6/Jason-CS (Continuity of Service) mission, the latest in a series of ocean-observing radar altimetry missions that have monitored Earth’s changing seas since the early 1990s. Sentinel-6/Jason-CS is a collaboration between NASA, ESA, the European Union, EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites), and NOAA (U.S. National Oceanic and Atmospheric Administration). The European Commission provided funding support, and the French space agency CNES (Centre National d’Études Spatiales) contributed technical support.

Keeping current

“The ocean is getting busier, but it’s also getting more dangerous,” said Avichal Mehra, deputy director of the Ocean Prediction Center at the National Weather Service in College Park, Maryland. He and his colleagues produce marine weather forecasts using data from ocean-based instruments as well as complementary measurements from five satellites, including Sentinel-6 Michael Freilich. Among those measurements: sea level, wave height, and wind speed. The forecasters derive the location of large currents from changes in sea level.

One of the planet’s major currents, the Gulf Stream is located off the southeastern coast of the United States, but its exact position varies. “Ships will actually change course depending on where the Gulf Stream is and the direction of the waves,” said Mehra. “There have been instances where, in calm conditions, waves interacting with the Gulf Stream have caused damage or the loss of cargo containers on ships.”

Large, warm currents like the Gulf Stream can have relatively sharp boundaries since they are generally higher than their surroundings. Water expands as it warms, so warm seawater is taller than cooler water. If waves interact with these currents in a certain way, seas can become extremely rough, presenting a hazard to even the largest ships.

“Satellite altimeters are the only reliable measurement we have of where these big currents can be,” said Deirdre Byrne, sea surface height team lead at NOAA in College Park.

There are hundreds of floating sensors scattered about the ocean that could pick up parts of where such currents are located, but these instruments are widely dispersed and limited in the area they measure at any one time. Satellites like Sentinel-6B offer greater spatial coverage, measuring areas that aren’t regularly monitored and providing essential information for the forecasts that ships need.

Consistency is key

Sentinel-6B won’t just help marine weather forecasts through its near-real-time data, though. It will also extend a long-term dataset featuring more than 30 years of sea level measurements, just as Sentinel-6 Michael Freilich does today.

“Since 1992, we have launched a series of satellites that have provided consistent sea level observations from the same orbit in space. This continuity allows each new mission to be calibrated against its predecessors, providing measurements with centimeter-level accuracy that don’t drift over time,” said Severine Fournier, Sentinel-6B deputy project scientist at NASA’s Jet Propulsion Laboratory in Southern California.  

This long-running, repeated measurement has turned this dataset into the gold standard sea level measurement from space — a reference against which data from other sea level satellites is checked. It also serves as a baseline, giving forecasters a way to tell what ocean conditions have looked like over time and how they are changing now. “This kind of data can’t be easily replaced,” said Mehra.

More about Sentinel-6B

Sentinel-6/Jason-CS was jointly developed by ESA, EUMETSAT, NASA, and NOAA, with funding support from the European Commission and technical support from CNES.

A division of Caltech in Pasadena, JPL contributed three science instruments for each Sentinel-6 satellite: the Advanced Microwave Radiometer, the Global Navigation Satellite System – Radio Occultation, and the Laser Retroreflector Array. NASA is also contributing launch services, ground systems supporting operation of the NASA science instruments, the science data processors for two of these instruments, and support for the U.S. members of the international Ocean Surface Topography and Sentinel-6 science teams.

For more about Sentinel-6/Jason-CS, visit:

https://sealevel.jpl.nasa.gov/missions/jason-cs-sentinel-6

News Media Contacts

Jane J. Lee / Andrew Wang
Jet Propulsion Laboratory, Pasadena, Calif.
626-491-1943 / 626-379-6874
jane.j.lee@jpl.nasa.gov / andrew.wang@jpl.nasa.gov

2025-116

Powered by WPeMatico

Get The Details…
Anthony Greicius

Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research

Artemis II Crew Both Subjects and Scientists in NASA Deep Space Research

Artemis II NASA astronauts (left to right) Reid Wiseman, Victor Glover, and Christina Koch, and CSA (Canadian Space Agency) astronaut Jeremy Hansen stand in the white room on the crew access arm of the mobile launcher at Launch Pad 39B as part of an integrated ground systems test at Kennedy Space Center in Florida on Wednesday, Sept. 20, 2023. The test ensures the ground systems team is ready to support the crew timeline on launch day.
NASA/Frank Michaux

With Artemis II, NASA is taking the science of living and working in space beyond low Earth orbit. While the test flight will help confirm the systems and hardware needed for human deep space exploration, the crew also will be serving as both scientists and volunteer research subjects, completing a suite of experiments that will allow NASA to better understand how human health may change in deep space environments. Results will help the agency build future interventions, protocols, and preventative measures to best protect astronauts on future missions to the lunar surface and to Mars.

Science on Artemis II will include seven main research areas:

ARCHeR: Artemis Research for Crew Health and Readiness 

NASA’s Artemis II mission provides an opportunity to explore how deep space travel affects sleep, stress, cognition, and teamwork — key factors in astronaut health and performance. While these effects are well-documented in low Earth orbit, they’ve never been fully studied during lunar missions.

Artemis II astronauts who agreed to be part of the study will wear wristband devices that continuously monitor movement and sleep patterns throughout the mission. The data will be used for real-time health monitoring and safety assessments, while pre- and post-flight evaluations will provide deeper insights into cognition, behavior, sleep quality, and teamwork in the unique environment of deep space and the Orion spacecraft.

The findings from the test flight will inform future mission planning and crew support systems, helping NASA optimize human performance for the next era of exploration on the Moon and Mars.

Immune Biomarkers

Saliva provides a unique window into how the human immune system functions in a deep space environment. Tracing changes in astronauts’ saliva from before, during, and after the mission will enable researchers to investigate how the human body responds to deep space in unprecedented ways.

Dry saliva will be collected before, during, and after the mission. It will be blotted onto specialized paper in pocket-sized booklets since equipment needed to preserve wet spit samples in space – including refrigeration – will not be available due to volume constraints. To augment that information, liquid saliva and blood samples will be collected before and after the mission.  

Astronaut Randy Bresnik in a red shirt looks at small white booklet for saliva collection. He is on the International Space Station.
NASA Astronaut Randy Bresnik prepares to collect a dry saliva sample aboard the International Space Station. The process, which helps scientists investigate how the immune system is affected by spaceflight and will be part of the Artemis II mission, involves blotting saliva onto special paper that’s stored in pocket-sized booklets.
Credit: NASA

With these wet and dry saliva samples, scientists will gain insights into how the astronauts’ immune systems are affected by the increased stresses of radiation, isolation, and distance from Earth during their deep space flight. They also will examine whether otherwise dormant viruses are reactivated in space, as has been seen previously on the International Space Station with viruses that can cause chickenpox and shingles.

The information gathered from this study, when combined with data from other missions, will help researchers develop ways to keep crew members safe and healthy as we explore farther and travel for longer periods on deep space missions.

AVATAR: A Virtual Astronaut Tissue Analog Response

AVATAR is another important component of NASA’s strategy to gain a holistic understanding of how the deep space environment affects humans. Scientists plan to use organ-on-a-chip technology during Artemis II, marking the first time these devices will be used beyond the Van Allen belts.

Roughly the size of a USB thumb drive, the chips will measure how individual astronauts respond to deep space stressors, including extreme radiation and microgravity. The organ chips will contain cells developed from preflight blood donations provided by crew members to create miniature stand-ins, or “avatars,” of their bone marrow. Bone marrow plays a vital role in the immune system and is particularly sensitive to radiation, which is why scientists selected it for this study.

Two fingers holding a transparent rectangular device the size of a USB drive. Inside the device is a long line of blue with two short, red lines at opposite ends.
An organ chip for conducting bone marrow experiments in space.
Credit: Emulate

A key goal for this research is to validate whether organ chips can serve as accurate tools for measuring and predicting human responses to stressors. To evaluate this, scientists will compare AVATAR data with space station findings, as well as with samples taken from the crew before and after flight.

AVATAR could inform measures to ensure crew health on future deep space missions, including personalizing medical kits to each astronaut. For citizens on Earth, it could lead to advancements in individualized treatments for diseases such as cancer.

AVATAR is a demonstration of the power of public-private partnerships. It’s a collaboration between government agencies and commercial space companies: NASA, National Center for Advancing Translational Sciences within the National Institutes of Health, Biomedical Advanced Research and Development Authority, Space Tango, and Emulate.

Artemis II Standard Measures

The crew also will become the first astronauts in deep space to participate in the Spaceflight Standard Measures study, an investigation that’s been collecting data from participating crew members aboard the space station and elsewhere since 2018. The study aims to collect a comprehensive snapshot of astronauts’ bodies and minds by gathering a consistent set of core measurements of physiological response.

The crew will provide biological samples including blood, urine, and saliva for evaluating nutritional status, cardiovascular health, and immunological function starting about six months before their launch. The crew also will participate in tests and surveys evaluating balance, vestibular function, muscle performance, changes in their microbiome, as well as ocular and brain health. While in space, data gathering will include an assessment of motion sickness symptoms. After landing, there will be additional tests of head, eye, and body movements, among other functional performance tasks. Data collection will continue for a month after their return.

All this information will be available for scientists interested in studying the effects of spaceflight via request to NASA’s Life Sciences Data Archive. The results from this work could lead to future interventions, technologies, and studies that help predict the adaptability of crews on a Mars mission.

Radiation Sensors Inside Orion

During the uncrewed Artemis I mission, Orion was blanketed in 5,600 passive and 34 active radiation sensors. The information they gathered assured researchers Orion’s design can provide protection for crew members from hazardous radiation levels during lunar missions. That doesn’t mean that scientists don’t want more information, however.

Similar to Artemis I, six active radiation sensors, collectively called the Hybrid Electronic Radiation Assessors, will be deployed at various locations inside the Orion crew module. Crew also will wear dosimeters in their pockets. These sensors will provide warnings of hazardous radiation levels caused by space weather events made by the Sun. If necessary, this data will be used by mission control to drive decisions for the crew to build a shelter to protect from radiation exposure due to space weather. 

Additionally, NASA has again partnered the German Space Agency DLR for an updated model of their M-42 sensor – an M-42 EXT – for Artemis II. The new version offers six times more resolution to distinguish between different types of energy, compared to the Artemis I version. This will allow it to accurately measure the radiation exposure from heavy ions which are thought to be particularly hazardous for radiation risk. Artemis II will carry four of the monitors, affixed at points around the cabin by the crew.

Collectively, sensor data will paint a full picture of radiation exposures inside Orion and provide context for interpreting the results of the ARCHeR, AVATAR, Artemis II Standard Measures, and Immune Biomarkers experiments.

Lunar Observations Campaign

The Artemis II crew will take advantage of their location to explore the Moon from above. As the first humans to see the lunar surface up close since 1972, they’ll document their observations through photographs and audio recordings to inform scientists’ understanding of the Moon and share their experience of being far from Earth. It’s possible the crew could be the first humans to see certain areas of the Moon’s far side, though this will depend on the time and date of launch, which will affect which areas of the Moon will be illuminated and therefore visible when the spacecraft flies by.

Spacecraft such as NASA’s Lunar Reconnaissance Orbiter have been surveying and mapping the Moon for decades, but Artemis II provides a unique opportunity for humans to evaluate the lunar surface from above. Human eyes and brains are highly sensitive to subtle changes in color, texture, and other surface characteristics. Having the crew observe the lunar surface directly – equipped with questions that scientists didn’t even know to ask during Apollo missions – could form the basis for future scientific investigations into the Moon’s geological history, the lunar environment, or new impact sites.

This visualization simulates what the crew of Artemis II might see out the Orion windows on the day of their closest approach to the Moon. It compresses 36 hours into a little more than a minute as it flies the virtual camera on a realistic trajectory that swings the spacecraft around the Moon’s far side. This sample trajectory is timed so that the far side is fully illuminated when the astronauts fly by, but other lighting conditions are possible depending on the exact Artemis II launch date. The launch is scheduled for no later than April of 2026.
NASA Goddard/Ernie Wright

It will also offer the first opportunity for an Artemis mission to integrate science flight control operations. From their console in the flight control room in mission control, a science officer will consult with a team of scientists with expertise in impact cratering, volcanism, tectonism, and lunar ice, to provide real-time data analysis and guidance to the Artemis II crew in space. During the mission, the lunar science team will be located in mission control’s Science Evaluation Room at NASA’s Johnson Space Center in Houston. 

Lessons learned during Artemis II will pave the way for lunar science operations on future missions.

CubeSats

Several additional experiments are hitching a ride to space onboard Artemis II in the form of CubeSats – shoe-box-sized technology demonstrations and scientific experiments. Though separate from the objectives of the Artemis II mission, they may enhance understanding of the space environment.

Technicians install the Korea AeroSpace Administration (KASA) K-Rad Cube within the Orion stage adapter inside the Multi-Payload Processing Facility at NASA’s Kennedy Space Center in Florida on Tuesday, Sept. 2, 2025. The K-Rad Cube, about the size of a shoebox, is one of the CubeSats slated to fly on NASA’s Artemis II test flight in 2026.
Credit: NASA

Four international space agencies have signed agreements to send CubeSats into space aboard the SLS (Space Launch System) rocket, each with their own objectives. All will be released from an adapter on the SLS upper stage into a high-Earth orbit, where they will conduct an orbital maneuver to reach their desired orbit.

  • ATENEA – Argentina’s Comisión Nacional de Actividades Espaciales will collect data on radiation doses across various shielding methods, measure the radiation spectrum around Earth, collect GPS data to help optimize future mission design, and validate a long-range communications link.
  • K-Rad Cube – The Korea Aerospace Administration will use a dosimeter made of material designed to mimic human tissue to measure space radiation and assess biological effects at various altitudes across the Van Allen radiation belt.
  • Space Weather CubeSat – The Saudi Space Agency will measure aspects of space weather, including radiation, solar X-rays, solar energetic particles, and magnetic fields, at a range of distances from Earth.
  • TACHELES – The Germany Space Agency DLR will collect measurements on the effects of the space environment on electrical components to inform technologies for lunar vehicles.

Together, these research areas will inform plans for future missions within NASA’s Artemis campaign. Through Artemis, NASA will send astronauts to explore the Moon for scientific discovery, economic benefits, and build the foundation for the first crewed missions to Mars.

Powered by WPeMatico

Get The Details…
Rachel H. Kraft

NASA’s Northrop Grumman CRS-23 Infographics & Hardware

NASA’s Northrop Grumman CRS-23 Infographics & Hardware

A cylinder-shaped spacecraft with prominent cymbal-shaped solar arrays on either side of it nears a long robotic arm, with a cloudy Earth below.
Northrop Grumman’s Cygnus cargo craft awaits its capture by the International Space Stations’ Canadarm2 robotic arm, commanded by NASA astronaut Matthew Dominick on Aug. 6, 2024.
Credit: NASA

NASA’s Northrop Grumman Commercial Resupply Services 23, or Northrop Grumman CRS-23, will deliver more than 11,000 pounds of science and supplies to the International Space Station. This mission will be the first flight of the Cygnus XL, the larger, more cargo-capable version of the company’s solar-powered spacecraft.

The Cygnus XL will launch on a SpaceX Falcon 9 rocket from the Cape Canaveral Space Force Station in Florida.  Following arrival, astronauts aboard the space station will use the Canadarm2 to grapple Cygnus XL before robotically installing the spacecraft to the Unity module’s Earth-facing port for cargo unloading. Stream live launch and arrival coverage on NASA+Amazon PrimeYouTube.

Mission Infographics

NASA’s Northrop Grumman 23 commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.
NASA’s Northrop Grumman 23 commercial resupply mission will launch on a SpaceX Falcon 9 rocket to deliver research and supplies to the International Space Station.
NASA
NASA’s Northrop Grumman 23 commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA’s Northrop Grumman 23 commercial resupply mission will launch from Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida.
NASA
NASA selected William
NASA selected William “Willie” McCool as an astronaut in 1996. McCool flew as a pilot on STS-107, his first mission. The STS-107 crew, including McCool, died on February 1, 2003, when space shuttle Columbia was lost during reentry over east Texas at about 9 a.m. EST, 16 minutes prior to the scheduled touchdown and NASA’s Kennedy Space Center. NASA’s Northrop Grumman 23 spacecraft is named in his honor.
NASA
NASA astronauts Jonny Kim and Zena Cardman will be on duty during the Cygnus spacecraft’s approach and rendezvous. Kim will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Cardman monitors the vehicle’s arrival.
NASA astronauts Jonny Kim and Zena Cardman will be on duty during the Cygnus spacecraft’s approach and rendezvous. Kim will be at the controls of the Canadarm2 robotic arm ready to capture Cygnus as Cardman monitors the vehicle’s arrival.
NASA

Mission Hardware

IDA Planar Reflector – This is a reflective element used by visiting spacecraft during docking. The spacecraft bounces a laser off the reflector to compute relative range, velocity, and attitude on approach to the International Space Station. Due to degradation found on the installed reflector, this unit will launch to support a future spacewalk to replace the damaged reflector.

Urine Processing Assembly (UPA) Distillation Assembly – The urine processor on the space station uses filtration and distillation to separate water from wastewater to produce potable water. This unit is launching as a spare.

Reactor Health Sensor – Part of the Environmental Control and Life Support System – Water Processing Assembly, includes two sensors with inlet and outlet ports to measure reactor health. This unit is being launched as a spare.

Pressure Management Device – This is an intravehicular activity system for performing pressurization and depressurization of the space station vestibules between the space station hatch and the hatch of a visiting spacecraft or other module, like the NanoRacks Airlock. During depressurization, most of the air will be added to the space station cabin air to save the valuable resource.

Air Selector Valve – This electro-mechanical assembly is used to direct airflow through the Carbon Dioxide Removal Assembly. Two units are launching as spares.

Major Constituent Analyzer Mass Spectrometer Assembly – This assembly monitors the partial pressure levels of nitrogen, oxygen, hydrogen, methane, water vapor, and carbon dioxide aboard station. This unit is launching as a contingency spare.

Major Constituent Analyzer Mass Sample/Series Pump Assembly – This contains plumbing and a pair of solenoid valves to direct sample gas flow to either of the redundant sample pumps. It draws sample gas from the space station’s atmosphere into the analyzer. This unit is launching as a contingency spare.

Major Constituent Analyzer Sample Distribution Assembly – This isolates the gas sample going to the Mass Spectrometer Assembly. The purpose is to distribute gas samples throughout the analyzer. This unit is launching as a contingency spare.

Charcoal Bed – The bed allows the Trace Contaminant Control System to remove high molecular weight contaminants from the station’s atmosphere. This unit is launching as a spare.

Common Cabin Air Assembly Heat Exchanger – This assembly controls cabin air temperature, humidity, and airflow aboard the space station. This unit is launching as a spare.

Sequential Shunt Unit – This regulates the solar array wing voltage when experiencing high levels of direct sunlight; in doing so, it provides usable power to the station’s primary power system. This unit is launching as a spare.

Solid State Lighting Assembly – This is a specialized internal lighting assembly aboard station. NASA will use one lighting assembly to replace a failed unit and will keep the others as spares.

Remote Power Control Module Type V This module distributes 120V/DC electrical power and provides current-limiting and fault protection to secondary loads aboard the orbiting laboratory. This module is launching as a spare.

Treadmill Isolator Assembly – The Upper, X, Y, and Z Isolator Assemblies are launching as spares for the space station’s treadmill, where they work together to reduce vibration and force transfer when astronauts are running.

Pump Fan Motor Controller – The controller is an electronic controller to modulate the power to the motor windings, which are coils of conductive wire that are wrapped around its core carrying electric current to drive the motor. Windings are commonly used in household appliances, cars (power steering), pumps, and more.

Quick Don Mask Assembly – This mask is used by the crew, along with the Pre-Breath Assembly, in emergency situations. This unit is launching to replace a unit aboard station.

Anomaly Gas Analyzer – This analyzer senses various gases, like oxygen, carbon dioxide, carbon monoxide, ammonia, and others, along with cabin pressure, water vapor and temperature. Two units are launching as an upgrade to the current analyzer system used on board.

Nitrogen, Oxygen Resupply Maintenance Kit – One tank of nitrogen and one tank of oxygen used for gas replenishment aboard the space station are launching to maintain gas reserves.

Crew and Equipment Translation Aid Luminaire – This is a lighting unit used aboard station to illuminate the astronauts’ equipment cart and surrounding work areas during spacewalks.

Powered by WPeMatico

Get The Details…
Joseph Zakrzewski

Progress 93 Cargo Craft Launching to Station Live on NASA+

Progress 93 Cargo Craft Launching to Station Live on NASA+

The Progress 91 cargo craft lifts off on time from the Baikonur Cosmodrome in Kazakhstan.
The Progress 91 cargo craft lifts off on Feb. 27, 2025, from the Baikonur Cosmodrome in Kazakhstan to the International Space Station.
NASA+

NASA’s live coverage is underway on NASA+, Amazon Prime, and more. Learn how to watch NASA content through a variety of platforms, including social media.  

The unpiloted Progress 93 spacecraft is scheduled to launch at 11:54 a.m. EDT (8:54 p.m. Baikonur time) on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. The Roscosmos spacecraft will carry about three tons of food, fuel, and supplies for the Expedition 73 crew aboard the International Space Station. 

After a two-day, in-orbit journey to the station, the spacecraft will dock autonomously to the aft port of the station’s Zvezda module at approximately 1:27 p.m. on Saturday, Sept. 13. NASA’s rendezvous and docking coverage will begin at 12:30 p.m. on NASA+, Amazon Prime, and more.

Learn more about station activities by following @NASASpaceOps and @space_station on X, as well as the International Space Station’s Facebook and Instagram accounts.    

Powered by WPeMatico

Get The Details…

Mark A. Garcia